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ABSTRACT 

Single microphones may not be able to distinguish a sound source of interest from others in the vicinity, 

detect a source in windy environments, or measure faint signals which may be below the microphone 

noise floor. However, adding just a single additional microphone can help resolve all these issues. This 

paper reviews how ICP microphones work and explains their noise floors. Next, we'll show you how to 

combine the signals from two or more microphones to tell one source from another, filter unwanted 

sources (like flow-induced pressures) from data, and reduce noise floors to measure very low signals. 

We process the signal pairs using cross-spectral analysis to calculate the coherence between the signals. 

The coherence can help extract a desired signal or reject undesired ones. 

1. INTRODUCTION  

All integrated circuit piezoelectric (ICP) sensors function the same way. A fluctuating electrical charge 

is converted into a voltage by a Resistor-Capacitor (RC) circuit. The voltage is then amplified by a 

transistor before it is transmitted to a Data Acquisition System (DAS). You can learn more about how 

ICP sensors work, along with their upper and lower limits, in [1]. Figure 1 shows the measured noise 

floor of an ICP accelerometer, representing the lowest signals you can measure with a single sensor. At 

very low frequencies, noise floors are dominated by thermal fluctuations which induce false signals. 

Although these fluctuations can affect vibration measurements, they are lower than the threshold of 

human hearing (20 Hz). Above 20 Hz the primary source of noise within a sensor is caused by noise 

within the transistor. The good news is that the resistor and transistor background noise in each sensor 

are independent of other sensors, meaning that the noise floors from two sensors are statistically 

uncorrelated. We can use this statistical independence to our advantage with coherent signal processing. 
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Figure 1: Noise floor of an ICP accelerometer. 

2.   COHERENT SIGNAL PROCESSING  

Coherent signal processing (CSP) is well understood and explained by many authors [see references 2-4, 

for example]. Let’s start with signal processing of one signal where we compute the power spectrum by 

averaging Fast Fourier Transforms (FFTs) over many short time blocks. This is usually shown as the 

expected value of the product of the signal X and its complex conjugate for each frequency, averaged 

over time T : 

   𝐺𝑥𝑥(𝑓) = lim
𝑇→∞

2

𝑇
𝐸{𝑋∗(𝑓, 𝑇)𝑋(𝑓, 𝑇)}. (1) 

 

Power spectra are averaged and only appropriate for signals which are reasonably statistically stationary 

over time. Figure 2 shows an online spectral processing demonstrator on the hambricacoustics.com 

website. Four seconds of data, comprised of white noise and a single tone, are processed into a Power 

Spectral Density (PSD). The important processing parameters used here are: 

 

– The Sampling rate (fs): 16,384 Hz 

– Window length: 1 second (by specifying four time blocks to subdivide the overall time 

record) 

– Windowing: Rectangular 

– Overlap: None 

 

 We won’t discuss windowing or overlap here, although both are useful in signal processing. In 

general, using a shorter window length allows you to obtain more averages and thus potentially improve 

statistical confidence. However, shorter windows mean wider frequency bandwidths, so there is a trade-

off between the number of averages and the frequency details you can resolve. For simplicity, this 

demonstration uses a rectangular window with no overlap. 

 The statistical theory behind coherent signal processing can be complicated, but in simple terms, if 

you average the products of the FFTs of two signals X and Y over many time blocks, the underlying 

uncorrelated signals average to nearly nothing, leaving the correlated signals. The cross-power spectrum  

is 

   𝐺𝑥𝑦(𝑓) = lim
𝑇→∞

2

𝑇
𝐸{𝑋∗(𝑓, 𝑇)𝑌(𝑓, 𝑇)}. (2) 

 

Note that you can only perform this calculation for data acquired on the same system at the same sampling 

rate.  In some cases, for example when each microphone is corrupted by independent random noise 

sources (like wind), a simple cross spectrum will give you a reasonable estimate of the spectrum of a 

sound source. We’ll see an example of this later. 

 

https://www.hambricacoustics.com/demos/SAH_vibroacoustic_demos.html


     

 
Figure 2: Online signal processing demonstrator at hambricacoustics.com. The time history is on the 

top, and the power spectrum on the bottom. 

 

 The coherence between the two signals is the ratio of the square of the amplitude of the cross spectrum 

and the product of the autospectra of the two signals: 

 

   𝛾𝑥𝑦
2 (𝑓) =

|𝐺𝑥𝑦(𝑓)|
2

𝐺𝑥𝑥(𝑓)𝐺𝑦𝑦(𝑓)
. (3) 

 

Coherence ranges from 0 (X and Y are completely uncorrelated) to 1 (X and Y are identical). Here’s the 

good part: you can use the coherence to either extract the correlated portions of the X and Y signals as the 

Coherent Output Power (COP): 

   𝐶𝑂𝑃(𝑓) = 𝛾𝑥𝑦
2 (𝑓)𝐺𝑦𝑦(𝑓), (4) 

 

or remove the correlated signals, resulting in the Incoherent Output Power (IOP): 

 

   𝐼𝑂𝑃(𝑓) = (1 − 𝛾𝑥𝑦
2 (𝑓))𝐺𝑦𝑦(𝑓). (5) 

 

 Here’s a simple demonstration: three sinusoidal signals (the desired signal) are corrupted by pink 

background noise. We used Matlab to synthesize 30 seconds of data for two microphones. Both mics 

measured the sinusoids, and each heard its own uncorrelated pink noise signal (incoherent between both 

mics). Figure 3 shows the PSDs of the sinusoidal signal and one of the pink noise signals. Figure 4 

shows the coherent and incoherent output powers of the first microphone. The underlying sinusoids are 

clear, but there is some residual background noise in the coherent signal. This is because the averaging 

process did not completely eliminate the uncorrelated noise. Repeating the calculation with longer time 

records provides more averaging and lowers the background noise. 

https://www.hambricacoustics.com/demos/SAH_vibroacoustic_demos.html


     

 
Figure 3: A sinusoidal signal (three sinusoids between 100 and 1000 Hz) in red with pink noise 

background in blue.  The microphones measure the sums of the sinusoids and the pink noise. 

 

 
Figure 4: Coherent (red) and incoherent (blue) signals extracted.  Some residual background noise 

remains in the COP which can be reduced with more averaging over long times. 

 

 



     

3.   DEMONSTRATIONS  

3.1. Wind Noise Removal  

For this demonstration, we use audio files from the BBC archives [5]. You can find an amazing number 

of free high-quality stereo .wav files, most sampled at 44.1 kHz and higher. We’ve extracted 30 seconds 

of fairly steady sound from London’s Heathrow airport2, which includes several aircraft taxiing, taking 

off, and landing, along with 30 seconds of wind noise3, which is also reasonably consistent over time. 

Recall that the cross-spectral and coherence methods assume the sound is fairly consistent over time and 

relies on averaging to eliminate uncorrelated signals.  

 Figure 5 shows the autospectra of one channel of the airport noise (original signal), one channel of 

wind noise, and the sum of the two. The airport noise is a combination of strong tones from aircraft 

engines at multiple frequencies, along with broad-band humps of engine sound. The wind noise causes 

a broad spectral hump centered near 100 Hz. This hump is related to the wind speed (faster wind speeds 

shift the peak frequency higher), as well as the size of the wind turbulence (larger turbulent eddies 

generate lower frequency sound). All flow-induced sound decreases with frequencies above the hump. 

 The total measured signal shows that the wind noise exceeds the airport noise below about 500 Hz, 

and artificially increases the broad-band levels at all frequencies. The wind can be eliminated with a 

simple cross-spectral calculation, provided the two microphones are placed fairly far apart and oriented 

perpendicular to the wind flow. This orientation ensures that turbulent eddies are uncorrelated between 

the mics. (If the mics are placed in the wind flow direction, eddies will pass by both mics with a short 

phase delay and will remain coherent.) 

 Figure 6 compares one channel of the original signal with the CSD of both channels (with 

independent wind signals added to both). The simple CSD averages out the wind noise very well for 

frequencies above 30 Hz. Below 30 Hz, some of the wind noise remains. This could be reduced further 

with longer time records (recall the simple example earlier). Figure 6 also shows the IOP (Equation 5) 

of one of the signals which matches the individual wind noise autospectrum. There are other applications 

where the flow-induced signal is of interest, such as measuring flow-induced wall pressures in pipes and 

channels [6]. Using IOP eliminates any coherent acoustic plane waves which may be propagating within 

the pipe. Conversely, CSDs or COP may be used to eliminate flow-induced wall pressures and return the 

acoustic plane wave spectra. 

3.2. Removing Unwanted Sources 

Now, let’s use coherence to remove unwanted sound from other sources. In this demonstration, we use 

BBC sound files for an industrial motor4 (the desired sound source) and a car engine5 (the unwanted 

source). Figure 7 shows the individual autospectra of both sources along with their sum. The car engine 

corrupts the spectrum below about 200 Hz and also slightly near 5 kHz. Placing a second microphone 

close to the car engine allows us to compute coherence and use it to remove most of the unwanted signals. 

In this example, we assume the second microphone location causes the industrial motor sound to be 10% 

lower than that at the primary microphone. Figure 8 compares the uncorrupted industrial motor spectrum 

with that computed using the IOP approach (which removes any signals coherent between the mics). 

The ‘cleaned’ spectrum is much improved, but slightly lower than the original spectrum. This is because 

some of the desired signal remains in the mic close to the car engine and was removed using the IOP. 

 
2 https://sound-effects.bbcrewind.co.uk/search?q=07017060, London Heathrow Airport 
3 https://sound-effects.bbcrewind.co.uk/search?q=NHU05039063, blustery wind 
4 https://sound-effects.bbcrewind.co.uk/search?q=07059073, electronic sounds, motor hum 
5 https://sound-effects.bbcrewind.co.uk/search?q=07023057, BMC car 

 

https://sound-effects.bbcrewind.co.uk/search?q=07017060
https://sound-effects.bbcrewind.co.uk/search?q=NHU05039063
https://sound-effects.bbcrewind.co.uk/search?q=07059073
https://sound-effects.bbcrewind.co.uk/search?q=07023057


     

 

 
Figure 5: Autospectra of airport sound (red), wind in one microphone (blue), and sum (black). 

 

 

 
Figure 6: Autospectra of airport sound (red), cross-spectral density between the two mics (black), and 

uncorrelated spectral density of the wind at one of mics (blue). 

 

 



     

 
Figure 7: Autospectra of industrial motor (red), a nearby car engine (blue), and the sum (black). 

 

 
Figure 8: Autospectra of industrial motor (red), sum of motor and engine (black), and IOP (blue). 

 

 

 

 

 



     

3.3. Reduced Noise Floors 

Recall that an individual ICP sensor’s noise floor is caused by localized disturbances within the sensor 

housing that induce random signals in the sensor electronics.  These floors are completely uncorrelated 

with those in other sensors. We can therefore use COP to effectively lower our noise floors and measure 

very low signals. Figure 9 shows PCB’s published Z-weighted6 and A-weighted noise floors for p/n 

378B02 ½ inch free-field microphone. Sensor noise floors are measured in very quiet chambers with 

data acquisition systems (DAS). These DAS have their own noise floors, which are typically well below 

those of the sensors. 

 Some applications require measuring faint signals, in some cases below an individual microphone’s 

noise floor. In this application, a faint signal of about -40 dB Re: 20 Pa was generated but cannot be 

measured by a single mic. Figure 10 shows two microphones held together with double-sided hook and 

loop tape. Special care was taken to make sure they were electrically isolated, and that the vents on the 

preamplifiers were not blocked. The microphone assembly was inserted into a quiet test chamber (Figure 

11) which was placed in a quiet anechoic room. Data were acquired on a National Instruments NI-9234 

system at a sampling rate of 51.2 kHz. 

 Figure 12 shows the individual autospectra of each microphone compared to the published PCB noise 

floor data (in symbols at one-third octave center frequencies). The levels are all consistent as expected7, 

and there is no evidence of the faint 1 kHz tone. The COP, however, significantly reduces the noise floor 

by eliminating the incoherent internal electronic noise, clearly revealing the quiet 1 kHz tone. Further 

reductions are possible by increasing the time record length. This phenomenon applies to all PCB ICP 

microphones, as the internal electronics are all similar. 

 

 

 
Figure 9: Noise floor of a PCB ½” free-field 378B02 microphone. 

 

 
6 Z-weighting implies no weighting. 
7 There is some low frequency broad-band background noise below about 70 Hz, but it does not affect the 

measurements at higher frequencies. 

 



     

 
 

Figure 10: Two electrically isolated PCB 378B02 microphones with unblocked pre-amplifier vents. 

 

 

 
 

Figure 11: Quiet test chamber with microphone pair mounted in lid (left). 

 

 
Figure 12: Individual microphone autospectra compared to PCB published noise floor and coherent 

output power between both mics (black). Faint 1 kHz tone is evident in the COP (red symbol). 

 



     

4.   SUMMARY AND CONCLUSIONS 

Using two microphones for your measurements, simultaneously acquired on a DAS at consistent 

sampling rates, allows you to use cross-spectral processing to: 

 

– extract desired signals in windy environments, 

– remove unwanted signals by placing the second microphone close to a corrupting source, and 

– measure faint signals below a single microphone’s noise floor. 

 

These methods work for signals that are reasonably consistent over time. They rely on averaging over 

multiple time blocks to estimate coherence, which is then used to compute coherent or incoherent output 

power. 

 These principles can also be applied to any other ICP sensor. You can even combine microphone and 

accelerometer signals the same way. For example, place an accelerometer on the surface of either a 

source of interest, or an unwanted source. Simply compute the coherence of the accelerometer and 

microphone signals, and either remove or accentuate the portion correlated with the accelerometer. 
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